Very High Performance Image Rejecting Direct Conversion Receivers

Or how can an 11 ma receiver out perform the world's best ham transceivers?

Dan Tayloe, N7VE

NC2030 20m Prototype

NC2030 Receiver Specs

- MDS (3db S+N/N): -135 dbm (0.1 uV)
- Receiver Bandwidth (-6db): 350-800 Hz
- IP3 DR: 93db (2KHz), 105 db (5 KHz),
 109 db (10 KHz)
- BDR: 119db (2 KHz), 128.5db (5 KHz),
 139db (10 KHz), 142db (20 KHz)
- Image rejection: ~ >45 db over the band
- Receiver current drain: ~11 ma at 12v

BDR: A Comparison – 5 KHz

Blocking Dynamic Range (5 KHz spacing - Preamp Off)

NC2030 at full sensitivity, ranks among the best rigs which were measured with their RF pre-amps off.

Note: With the RF pre-amp on, the K2 suffers a 7 db degradation in blocking

Even at only 2 KHz, the NC2030 performs at least as well as all but two rigs measured at 5 KHz.

Blocking DR: A comparison (vs. K2)

10 db			
*Extracted	d from QST	K2 expand	ded report

KHz	Low Side	High Side
2	119	
3	122	118
4	125.5	122
5	128.5	125
6	-	-
7	133	130
10	139	137
20	142	142

NC2030 Blocking DR does not plateau - Rejection keeps improving

K2 plateau shows IF amp saturation

- Signals on the other side of the band (300+ KHz away) can still cause blocking

=> NC2030 blocking is a bit worse close in, much better further out

IP3DR: A comparison – 5 KHz

Third order intercept Dynamic Range (5 KHz spacing - Preamp Off)

NC2030 at **5** KHz is **13** db better than the best.

NC2030 at **2** KHz is still better than all the rest at **5** KHz.

Not a true apple-to-apples comparison since NC2030 is at *full sensitivity* while other rigs have *pre-amps off*

IP3 DR: A comparison (vs. K2)

KHz	Low Side	High Side
2	93	-
3	98.5	93.5
4	102	98.5
5	105	102
6	-	106
7	107.5	109
10	109	109
20	109	109

IP3DR is *noticeably better* than the best radios available (K2/Orion)

NC2030 appears 17 db better 2 KHz away (93 db vs. 76 db)

NC2030 appears *18 db* better 5 KHz away (105 db vs. 87 db)

Typical Superhet Front End

- This is a simplified view, but represents many superhet receiver front ends
- The large signal performance is set in the sections before the radio "brick wall" filtering (Xtal filter)

Superhet Front End Bandwidth

- RF preamp, first mixer, and first IF amp sees all signals in the entire band all at the same time.
- Wide front end bandwidth is the main reason preamps are turned off and attenuators are kicked in during a contest.

Phasing DC Front End

- The narrow bandwidth direct conversion detector allows few signals to get to the audio preamps.
- The audio preamps also has a narrow bandwidth, thus off frequency signals are attenuated even further prior to the receiver "brick wall" audio filter

Band View: Superhet Vs. DC RCVR

- Superhet RF preamp/Mixer/IF Amp sees all signals at full strength
 - Must remain linear with the sum of all the signals on the band
 - This is hard! RF pre-amp on/off, Attenuators, Variable IF amp gain
 - Requires a lot of power to stay linear; IF amp often uses 50 to 100 ma
- DC receiver sees only a fraction of the band
 - Must remain linear over just a few of the many signals on the band
 - Only the close in signals are problems; -16 db, 5 KHz away, -40 db at 20 KHz
 - A much easier problem!

Superhet RF/IF Preamps

- RF and IF amps are typically 50 ohm in, and low Z out
 - These are both *power* amplifiers
- Wide band, high signal linearity amps require lots of power
- RF pre-amps are not normally designed to survive large in band signals
 - Which is why they are useless and get turned off in a contest
 - First mixer can only handle so much power out of RF preamp anyway
 - Superhet performance measured with RF Preamp off for a reason

DC Receiver Detector/AF Preamps

- Detector has ~0.9 db of conversion loss rather than the typical high performance superhet 6 to 8 db mixer loss
 - Thus, RF preamp not needed to overcome first mixer loss
 - Allows receiver to have both high sensitivity & large signal performance
- AF Pre-amp is low Z in, high Z out, voltage amplifier
 - Voltage amplification takes less power than power amplification
- Detector/AF preamp rolls off relatively quickly
 - 16 db down at 5 KHz, 27 db at 10 KHz, 39 db at 20 KHz

Superhet "Brick Wall" Filters

Typical crystal filter, 5 crystals

- RF preamps and IF amps must have power limits because of crystal filter limitations
- Crystals used in xtal filters typically 10 mW
 - ~1.4v RF limit, blocking limit of ~140 db BDR
- Crystal power limitations may contribute to close in IP3 problems
- FT243 crystals might make superior filters
 - Old FT243 crystals handle much higher power levels

DC Receiver "Brick Wall" Filters

8 pole low pass filter

- NC2030 8 pole low pass filter
- High voltage, very high dynamic range "brick wall" RC filters are easily constructed
 - Caps typically 50v
 - 1/2w resistors common
 - Op amps typically +/- 18v (36v)
- R/C filters: Lots of Rs and Cs!
- With a 3v receiver chain, NC2030 has ~13 db better
 IP3DR and similar BDR to the best available rigs
 - And this is at *full sensitivity*, not "RF Pre-amp off"!

Superhets can be simple

However, this is not a high performance superhet

DC Receivers can be simple also

However, this is not a high performance DC Rcvr

A High Performance Phasing DC Receiver (NC2030) has a Price

Lots of parts, with many Rs and Cs!

- ~280 out of 360 total parts are Rs and Cs
- 175 Capacitors
- 108 Resistors
- 25 Inductors
- 19 ICs
 - 5 op amps, 5 LDO voltage regulators, 5 digital ICs, 2 uPs, 1 SCAF, and 1 switching regulator
- 17 Transistors
- 17 diodes
- 2 crystals
- ⇒ High performance DC Receiver (NC2030) is more complex than a typical superhet
 - But higher performance and less power!

Quadrature Detector

- Clocks route RF input to 1 of four Detector Caps at a 4x rate
- Each det. cap. averages ¼ cycle of RF Audio!
- Four blade ceiling fan w/ strobe light analogy

Quadrature Detector Outputs

- Note that 0° & 180° and 90° & 270° outputs are *mirror images* of each other.
- These pairs (such as 0° & 180°) are summed differentially via + & inputs of op-amps

NC2030 5 KHz Blocking Calculations

- The simple RC roll off of the Detector and AF preamp is somewhat gradual, but 16 db of attenuation greatly helps BDR (and IP3DR also)

- AF Preamp has 66x of voltage gain (36 db)
- 16 db roll off at 5 KHz leaves 20 db of gain (10x)
- With 3v pk-pk max audio output, RF input blocks at 0.3v (-6 dbm) 5 KHz away
- Using -135 dbm sensitivity, BDR = 135 6 = 129 db
- Actual measured result 128.5 db BDR at 5 KHz

Detector Clock Drive

- Need to switch to each of four outputs every RF cycle, ½ cycle dwell time on each detector output
- Two phase clock used to get four output states

Detector Clock Drive Circuit A

Four states
0 0
0 1
11
1 0
Not a straight
binary counter

- 4x frequency source used with digital dividers
- Advantage: Accurate clocks, excellent opposite sideband rejection over a very wide range
- Disadvantage: Dividers are a bit power hungry

Clock Drive Circuit B (NC2030)

- 1x frequency source used with L/C delay section
- Advantage: Uses much less power than dividers
- Disadvantage: Bandwidth limited, *USB rejection* good over a limited range (i.e., CW portion of band)

I – Q USB and LSB Outputs

- I (0°, 180°) and Q (90°, 270°) are 90 degrees apart
- USB/LSB depends on which leads the other

90° Shift Phasing Network

- Two stage R/Cphase shift network
- Both sides cause phase shift
 - One side starts first
 - 2nd trails 1st by 90°
- Limited sideband rejection range
- Rejection range optimized for CW bandwidth (500 Hz)

Phasing – How to Get 90° Shift

- One side starts falling in phase after the other
- The late side is adjusted to be exactly 90° late
- The 90° difference is good for a *limited range*

USB After 90° Phase Shift

USB I,Q before phasing

USB I,Q after phasing

- After phase shifting, I & Q opposites of each other
- Phasing outputs sum to zero USB suppressed

USB Rejection Plot

- USB rejection *varies* across audio bandpass
- Smallest USB rejection at
 150 &650 Hz, ~ 55 db down
- Filtering improves high & low frequency rejection
- Rejection shown is best case
 - LO clock uses L/C phasing
 - Causes USB rejection to vary across band
 - > 45 db across the band typical

LSB After 90° Phase Shift

LSB I,Q before phasing

LSB I,Q after phasing

- After phase shifting, I & Q are in phase
- Phasing outputs sum to 2x LSB enhanced

LSB Audio Response Plot SCAF LPF not included

- 6db at 350 & 800 Hz; 60 db at 50 Hz & 1.6 KHz
- Does not include the additional 40 db of variable SCAF LPF attenuation
- Main RC filter designed for low audio ringing

LSB Audio Response Plot

Actual Band Noise - 30m

-30

SCAF at

~700 Hz

-60

SCAF

Limit

-90

6.3 10 16 25 40 63 100 160

- High side audio roll off is very step
- SCAF cleans up high frequency roll off even when "wide open"
- SCAF very good at removing a high side interferer when needed
- Noise below 100 Hz is a sound card issue

DC Receiver Pwr Consumption

- Quadrature detector voltage driven not power driven as required by diode mixers.
 - 74CBTLV3253 is a dual 4:1 analog bus switch
- First low noise audio preamplifier outputs are voltage outputs, not power, as needed by superhets
- 3v receiver powered by a 3v & 5v switching supply, giving a 3x power savings over simple linear regulation from 12v

DC Receiver Pwr Consumption

- VFO and VXO; 3 ma
- LO mixer; 1.6 ma
- LO filter amp; 9.5 ma
- LO squaring & detector driver (74AHC00); 0.8 ma
- Quadrature detector ("Tayloe Mixer"); 4.4 ma
- First audio LNA & phase shift network; 7.8 ma
- High and low pass RC filters and headphone drivers; 2 ma
- SCAF variable audio low pass filter; 1 ma
- => Roughly 30 ma total receiver drain at 3v supply
 - 14 ma for the LO subsystem, 16 ma for the receiver line up
- => 11 ma at 12v into the 3v & 5v switching supply

Conclusions

- DC receivers have a performance advantage over superhets because:
- 1. DC quadrature det has lower loss (1 vs. 6 db)
 - DC does not need an RF amp for high sensitivity
- 2. DC detector has a limited ~1.5 KHz bandwidth
 - The superhet mixer can be 100's of MHz wide
- 3. DC AF amp also has ~1.5 KHz bandwidth
 - The superhet has a wide bandwidth IF amp (>1 MHz?)
- 4. DC receiver uses R/C active filters, not crystals
 - Superhet good to ~2v pk-pk because of its crystal filter
 - DC filter is good to 36v pk-pk signal
 - DC can have superior large signal capabilities (20+ db higher than current 3v NC2030)